Analysis of Ship Accidents in the Istanbul Strait Using Neuro-Fuzzy and Genetically Optimised Fuzzy Classifiers

Marine accident analysis is important for ships passing through narrow, shallow and busy waterways. This study analyses the accidents which have occurred in the Istanbul Strait and proposes both quantitative and qualitative assessments of marine accidents. Marine accidents occurring in the Istanbul Strait are analysed by using a method based on neuro-fuzzy and genetically optimised fuzzy classifiers. It can be concluded that accident severity increases when poor weather conditions prevail in the Strait regardless of ship size. Therefore, solutions to reduce unwanted events should be prioritised by accounting for weather conditions and the capacity of the vessels. This analysis indicates that the safety level would be significantly improved if all the vessels follow the passage guidelines.

 

AktenN. (2004). Analysis of shipping casualties in the BosphorusJournal of Navigation57(3), 345356.CrossRefGoogle Scholar
 
ArslanO. and TuranO. (2009). Analytical investigation of marine casualties at the Strait of Istanbul with SWOT–AHP methodMaritime Policy & Management36(2), 131145.CrossRefGoogle Scholar
 
AydogduY.V.YurtorenC.KumS.ParkJ.-S. (2010). Questionnaire survey on the risk perception in the Istanbul StraitJournal of Navigation and Port Research34(7), 517523http://dx.doi.org/10.5394/KINPR.2010.34.7.517.CrossRefGoogle Scholar
 
BarnettM.L. (2005). Searching for the root causes of maritime casualties - individual competence or organizational culture? WMU Journal of Maritime Affairs4(2), 131145.CrossRefGoogle Scholar
 
BasarE. (2010). Investigation into marine traffic and a risky area in the Turkish straits system: Çanakkale StraitTRANSPORT25510.CrossRefGoogle Scholar
 
BasarE. and YildirimU. (2014). Effect of the oil areas on marine traffic and oil spill risks at the Black SeaJournal of ETA Maritime Science2(2), 105110.Google Scholar
 
BishopC.M. (1995). Neural networks for pattern recognitionOxford University Press.CrossRefGoogle Scholar
 
CetisliB. (2010a). Development of an adaptive neuro-fuzzy classifier using linguistic hedges: Part 1Expert Systems with Applications37(8), 60936101.CrossRefGoogle Scholar
 
CetisliB. (2010b). The effect of linguistic hedges on feature selection: Part 2Expert Systems with Applications37(8), 61026108.CrossRefGoogle Scholar
 
CetisliB. and BarkanaA. (2010). Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training, SpringerSoft Computing14(4), 365378.CrossRefGoogle Scholar
 
CetisliB. and KalkanH. (2014). A new deterministic validation method for classifier success: Give&Take, 22nd IEEE Signal Processing and Communications Applications Conference (SIU), Trabzon, Turkey345348.CrossRefGoogle Scholar
 
ÇelikM. and ÇebiS. (2009). Analytical HFACS for investigating human errors in shipping accidentsAccident Analysis and Prevention41(1), 6675.CrossRefGoogle ScholarPubMed